CS106B Handout 15S
Winter 2020 February 14, 2020

Section Solutions 5

Problem One: Random Bag Grab Bag
Let’s begin by reviewing some aspects of this code.

i. What do the public and private keywords mean in RandomBag.h?

The public keyword indicates that the member functions listed underneath it are publicly acces-
sible by anyone using the RandomBag class. This essentially means that they form the public in-
terface for the class.

The private keyword indicates that the data members listed underneath it are private and only
accessible by the class itself. This means that those data members are part of the private imple-
mentation of the class and aren’t something that clients should be touching.

1i. What does the :: notation mean in C++?

It’s the scope resolution operator. 1t’s used to indicate what logical part of the program a given
name belongs to. The case we’ll primarily see it used is in the context of defining member func-
tions in a .cpp file, where we need to indicate that the functions we’re implementing are actually
member functions of a class, not freestanding functions.

iii. What does the const keyword that appears in the declarations of the RandomBag: :size() and
RandomBag: : isEmpty() member functions mean?

It indicates that those member functions aren’t allowed to change the data members of the class.
Only const member functions can be called on an object when in a function that accepts an ob-
ject of that class by const reference.

iv. Look at the implementation of our removeRandom function. What is its worst-case time com-
plexity? How about its best-case time complexity? Its average-case time complexity?

The worst-case time complexity of an operation is O(n), which happens when we remove the
very first element from the Vector. Our best-case complexity 1s O(1) if we remove from the end
of the Vector. On average, the runtime is O(n), since on average n/2 elements need to get
shifted over.

1/4

v. Based on your answer to the previous part of this question, what is the worst-case time complex-
ity of removing all the elements of an n-element RandomBag? What’s the best-case time com-
plexity? How about its average case?

The worst-case complexity would be O(n?), which would happen if we get very unlucky and al-
ways remove the very first element of the Vector, making the total work done roughly equal to
(n-1) + (n-2) + (n-3) + ... + 2 + 1 = O(n?). The best-case complexity would be O(n), which hap-
pens if we always remove the last element of the Vector (n x O(1) = O(n). The average-case
time complexity is O(n?), since on average each removal does O(n) work and we do it n times.

vi. In the preceding discussion, we mentioned that removing the very last element of a Vector is
much more efficient that removing an element closer to the middle. Rewrite the member func-
tion RandomBag: : removeRandom so that it always runs in worst-case O(1) time.

There a couple of different ways to do this. One option is based on the insight that removing from the
very end a Vector is an O(1)-time operation, so if we remove the last element of the Vector at each
step we'll get an O(1) worst-case bound. The problem is that the last element is decidedly not a random
element, since it always holds the last thing added. However, we can easily fix this by simply choosing a
random element of the array and swapping it with the one at the end. This makes the element at the end
randomly-chosen, which we still need to do, but makes deletions run in time O(1). Here’s some code for
this.

int RandomBag::removeRandom() {

if (isEmpty()) {
error("That which is not cannot be!");
}

int index = randomInteger(0, size() - 1);
int result = elems[index];

swap(elems[index], elems[elems.size() - 1]);
elems.remove(elems.size() - 1);
return result;

2/4

vii. The Stack and Queue types each have peek member functions that let you see what element
would be removed next without actually removing anything. How might you write a member
function RandomBag: : peek that works in the same way? Make sure that the answer you give
back is actually consistent with what gets removed next and that calling the member function
multiple times without any intervening additions always gives the same answer.

Part of the challenge here is that we need to find a way to determine what the next element to be re-
moved is going to be, but we have to do so in way that gives consistent results from call to call.

There are many different ways we can do this. One option, which guarantees a uniformly-random selec-
tion of elements from the RandomBag, is to store an extra variable keeping track of the index of the next
element to remove. Every time we add or remove an element, we’ll update this value to hold a new ran-
dom value. Here’s one way we can do this. First, the changes in the header:

class RandomBag {
public:
void add(int value);
int removeRandom();
int peek() const; // <-- Don't forget to make this const!

int size() const;
bool isEmpty() const;

private:
Vector<int> elems;
int nextIndex;

};

Next, the changes to the .cpp file. We’ve moved a lot of the logic out of RandomBag: : removeRandom
into RandomBag: : peek in order to unify the code paths and avoid duplicating our logic.

void RandomBag::add(int value) {
elems += value;

/* Stage a new element for removal. */
nextIndex = randomInteger(0, elems.size() - 1);

int RandomBag: :peek() const {
if (isEmpty()) {
error("That which is not cannot be!");

return elems[nextIndex];
int RandomBag::removeRandom() {
int result = peek();

swap(elems[nextIndex], elems[elems.size() - 1]);
elems.remove(elems.size() - 1);

/* Stage a new element for removal. */
nextIndex = randomInteger(0, elems.size() - 1);
return result;

3/4

Problem Two: Pointed Points about Pointers
The output of the program is shown here:

: 137, 0

137, 10
137, 20
137, 30
137, 40
137, 0

137, 10
137, 20
137, 30
137, 40
137, 0

137, 10
137, 20
: 137, 30
: 137, 40

Remember that when passing a pointer to a function, the pointer is passed by value! This means that you
can change the contents of the array being pointed at, because those elements aren't copied when the
function is called. On the other hand, if you change which array is pointed at, the change does not persist
outside the function because you have only changed the copy of the pointer, not the original pointer it-
self.

PUWNRFRPOPNWNREROPMWNRERO

Problem Three: Cleaning Up Your Messes
The first piece of code has two errors in it. First, the line
baratheon = targaryen;

causes a memory leak, because there is no longer a way to deallocate the array of three elements allo-
cated in the first line. Second, since both baratheon and targareon point to the same array, the last
two lines will cause an error.

The second piece of code is perfectly fine. Even though we execute
delete[] stark;
twice, the array referred to each time is different. Remember that you delete arrays, not pointers.

Finally, the last piece of code has a double-delete in it, because the pointers referred to in the last two
lines point to the same array.

Problem Four: Creative Destruction
The ordering is as follows:
« A constructor is called when elem is declared in main.
« A constructor is then called to set toPrint equal to a copy of elem.
« A constructor is then called to initialize the temp variable in printStack.
« When printStack exits, a destructor is called to clean up the temp variable.
« Also when printStack exits, a destructor is called to clean up the toPrint variable.

« When main exits, a destructor is called to clean up the elem variable.

4/4

	Problem One: Random Bag Grab Bag
	int RandomBag::removeRandom() {
	if (isEmpty()) {
	error("That which is not cannot be!");
	}
	int index = randomInteger(0, size() - 1);
	int result = elems[index];
	swap(elems[index], elems[elems.size() - 1]);
	elems.remove(elems.size() - 1);
	return result;
	}
	class RandomBag {
	public:
	void add(int value);
	int removeRandom();
	int peek() const; // <-- Don't forget to make this const!
	int size() const;
	bool isEmpty() const;
	private:
	Vector<int> elems;
	int nextIndex;
	};
	void RandomBag::add(int value) {
	elems += value;
	/* Stage a new element for removal. */
	nextIndex = randomInteger(0, elems.size() - 1);
	}
	int RandomBag::peek() const {
	if (isEmpty()) {
	error("That which is not cannot be!");
	}
	return elems[nextIndex];
	}
	int RandomBag::removeRandom() {
	int result = peek();
	swap(elems[nextIndex], elems[elems.size() - 1]);
	elems.remove(elems.size() - 1);
	/* Stage a new element for removal. */
	nextIndex = randomInteger(0, elems.size() - 1);
	return result;
	}
	Problem Two: Pointed Points about Pointers
	Problem Three: Cleaning Up Your Messes
	Problem Four: Creative Destruction

